超声波焊接利用高频超声波能量(15-50 khz)产生低振幅(1-100μm)机械振动。这种振动传递到部件连接接头处,产生热量,导致热塑性材料熔化,冷却后形成焊缝。超声波焊接是目前已知的最快的焊接技术,焊接时间通常在0.1秒到1.0秒之间。
超声波振动在热塑性塑料中产生正弦驻波。部分能量因为分子间摩擦而消散,导致材料温度升高。另一部分被传送到接头处,因边界摩擦产生局部加热。因此,超声波能量的最佳传输路径以及后续接头材料熔化行为,取决于零件的几何形状和材料的超声波吸收特性。
振源越靠近焊缝接头,因为材料吸收损失的能量就越小。当振源到接头的距离小于6.4mm时,该过程被称为近场焊接。适用于具有高能量吸收特性的结晶材料和低刚度的材料。当振源到接头距离大于6.4mm时,该过程被称为远场焊接。适用于具有低能量吸收特性的无定形材料和高刚度材料。
在焊接过程中,超声波振动垂直于接头表面。导能筋上尖点在压力下与被焊接零件接触。在尖点上产生大量的热,导能筋开始熔化。焊接过程可分为4个阶段。第一阶段,导能筋顶部熔化,熔化速度加快,随着接头两侧间隙减少,熔融的导能筋完全铺展并接触下方零件,此时导能筋的熔化速度降低。第二阶段,上下两零件面面接触,熔化区域加大。第三阶段,稳态熔化阶段,形成具有一定厚度的熔融层,也伴随产生恒定的温度场。当过程达到设定的焊接能量,或时间,或距离或其它控制条件时,超声波停止。第四阶段,继续保持压力,一些过量的熔体被挤压出焊缝,零件之间形成分子键连接并冷却。